cleanup code

This commit is contained in:
2023-02-28 23:26:23 +00:00
parent 599d8eec04
commit 3cb38bfd7d
2 changed files with 16 additions and 14 deletions

View File

@@ -3,6 +3,7 @@ import pandas as pd
from datetime import datetime from datetime import datetime
from utils.inspector import hash_submissions, suspicious_by_hash from utils.inspector import hash_submissions, suspicious_by_hash
CSV_DIR = os.path.join(os.getcwd(), 'csv')
def main(): def main():
submissions_dir_name = ' '.join(sys.argv[1:]) if len(sys.argv) > 1 else exit(f'\nNo submissions dir name given. Provide the name as an argument.\n\nUsage: python {sys.argv[0]} [submissions dir name]\nExample: python {sys.argv[0]} AssignmentX\n') submissions_dir_name = ' '.join(sys.argv[1:]) if len(sys.argv) > 1 else exit(f'\nNo submissions dir name given. Provide the name as an argument.\n\nUsage: python {sys.argv[0]} [submissions dir name]\nExample: python {sys.argv[0]} AssignmentX\n')
@@ -10,15 +11,15 @@ def main():
if not os.path.isdir(submissions_dir_path): if not os.path.isdir(submissions_dir_path):
exit(f'Directory {submissions_dir_path} does not exist.\nMake sure "{submissions_dir_name}" exists in "BB_submissions".') exit(f'Directory {submissions_dir_path} does not exist.\nMake sure "{submissions_dir_name}" exists in "BB_submissions".')
else: else:
hashes_csv_file_path = hash_submissions(submissions_dir_path) hashes_csv_file_path = hash_submissions(submissions_dir_path) # generate hashes for all files and return output csv file to load & find duplicate/suspicious hashes
csv = pd.read_csv(hashes_csv_file_path) csv = pd.read_csv(hashes_csv_file_path)
df = pd.DataFrame(csv) # df with all files and their hashes df = pd.DataFrame(csv) # df with all files and their hashes
df_suspicious = suspicious_by_hash(df) # df with all files with duplicate hash, excludes files from the same student id df_suspicious = suspicious_by_hash(df) # df with all files with duplicate/suspicious hash, excludes files from the same student id
csv_name = f'{submissions_dir_name}_suspicious_{datetime.now().strftime("%Y%m%d-%H%M%S")}.csv' csv_name = f'{submissions_dir_name}_suspicious_{datetime.now().strftime("%Y%m%d-%H%M%S")}.csv'
csv_out = os.path.join('csv', csv_name) csv_out = os.path.join(CSV_DIR, csv_name)
df_suspicious.to_csv(csv_out, index=False) df_suspicious.to_csv(csv_out, index=False)
if __name__ == '__main__': if __name__ == '__main__':
main() main()

View File

@@ -8,7 +8,7 @@ CSV_DIR = os.path.join(os.getcwd(), 'csv')
def get_hashes_in_dir(dir_path: str) -> list: def get_hashes_in_dir(dir_path: str) -> list:
hash_list = [] hash_list = []
for subdir, dirs, files in os.walk(dir_path): # Loop through all files in the directory and generate hashes for subdir, dirs, files in os.walk(dir_path): # loop through all files in the directory and generate hashes
for file in files: for file in files:
filepath = os.path.join(subdir, file) filepath = os.path.join(subdir, file)
with open(filepath, 'rb') as f: with open(filepath, 'rb') as f:
@@ -17,33 +17,34 @@ def get_hashes_in_dir(dir_path: str) -> list:
return hash_list return hash_list
def hash_submissions(submissions_dir_path: str): def hash_submissions(submissions_dir_path: str) -> str:
os.makedirs(CSV_DIR, exist_ok=True) os.makedirs(CSV_DIR, exist_ok=True)
submissions_dir_name = os.path.abspath(submissions_dir_path).split(os.path.sep)[-1] submissions_dir_name = os.path.abspath(submissions_dir_path).split(os.path.sep)[-1] # get name of submission/assignment by separating path and use rightmost part
csv_file_name = f'{submissions_dir_name}_file_hashes_{datetime.now().strftime("%Y%m%d-%H%M%S")}.csv' csv_file_name = f'{submissions_dir_name}_file_hashes_{datetime.now().strftime("%Y%m%d-%H%M%S")}.csv'
csv_file_path = os.path.join(CSV_DIR, csv_file_name) csv_file_path = os.path.join(CSV_DIR, csv_file_name)
with open(csv_file_path, 'w', newline='') as csvfile: # Open the output CSV file for writing with open(csv_file_path, 'w', newline='') as csvfile: # open the output CSV file for writing
fieldnames = ['Student ID', 'filepath', 'filename', 'sha256 hash'] fieldnames = ['Student ID', 'filepath', 'filename', 'sha256 hash']
writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader() writer.writeheader()
for student_dir_name in os.listdir(submissions_dir_path): for student_dir_name in os.listdir(submissions_dir_path): # loop through each student dir to get hashes for all files per student
student_dir_path = os.path.join(submissions_dir_path, student_dir_name) student_dir_path = os.path.join(submissions_dir_path, student_dir_name)
hashes_dict = get_hashes_in_dir(student_dir_path) hashes_dict = get_hashes_in_dir(student_dir_path) # dict with hashes for all student files
for d in hashes_dict: for d in hashes_dict:
d.update({'Student ID': student_dir_name}) # update hash records with student id d.update({'Student ID': student_dir_name}) # update hash records with student id
writer.writerows(hashes_dict) writer.writerows(hashes_dict)
return csv_file_path return csv_file_path
def get_suspicious_hashes(df: pd.DataFrame) -> list: def get_suspicious_hashes(df: pd.DataFrame) -> list:
drop_columns = ['filepath', 'filename'] drop_columns = ['filepath', 'filename'] # only need to keep 'student id' and 'sha256 hash' for groupby later
df = df.drop(columns=drop_columns).sort_values('sha256 hash') # clear not needed colums & sort by hash df = df.drop(columns=drop_columns).sort_values('sha256 hash') # clear not needed colums & sort by hash
duplicate_hash = df.loc[df.duplicated(subset=['sha256 hash'], keep=False), :] # all files with duplicate hash - incl. files from the same student id duplicate_hash = df.loc[df.duplicated(subset=['sha256 hash'], keep=False), :] # all files with duplicate hash - incl. files from the same student id
hash_with_multiple_student_ids = duplicate_hash.groupby('sha256 hash').agg(lambda x: len(x.unique())>1) # true if more than 1 unique student ids (= multiple student ids with same hash), false if unique (= same student id re-submitting with the same hash) hash_with_multiple_student_ids = duplicate_hash.groupby('sha256 hash').agg(lambda x: len(x.unique())>1) # true if more than 1 unique student ids (= files with the same hash by multiple student ids), false if unique student id (= files from the same student id with the same hash)
suspicious_hashes_list = hash_with_multiple_student_ids[hash_with_multiple_student_ids['Student ID']==True].index.to_list() # list with duplicate hashes - only if different student id (doesn't include attempts from same student id) suspicious_hashes_list = hash_with_multiple_student_ids[hash_with_multiple_student_ids['Student ID']==True].index.to_list() # list with duplicate hashes - only if different student id (doesn't include files from same student id)
return suspicious_hashes_list return suspicious_hashes_list