Files
BBGradebookOrganiser/utils/inspector.py

88 lines
5.8 KiB
Python
Raw Normal View History

import os
from datetime import datetime
import csv
import hashlib
import pandas as pd
CSV_DIR = os.path.join(os.getcwd(), 'csv')
def load_excluded_filenames(submissions_dir_name: str) -> list[str]: # helper function for hashing all files
csv_file_path = os.path.join(CSV_DIR, f'{submissions_dir_name}_excluded.csv')
if not os.path.exists(csv_file_path): # if csv file with excluded file names for submission does not exist
print(f'[WARNING] Cannot find CSV file with list of excluded file names: {csv_file_path}\n[INFO] All files will be hashed & inspected')
return [] # return empty list to continue without any excluded file names
else: # if csv file with excluded file names for submission exists
try:
df = pd.read_csv(csv_file_path)
filename_list = df['exclude_filename'].tolist() # get the values of the 'filename' column as a list
2023-03-03 13:13:28 +00:00
filename_list = [ f.lower() for f in filename_list ] # convert to lowercase for comparison with submission files
print(f'[INFO] Using CSV file with list of excluded file names: {csv_file_path}')
return filename_list
except Exception as e: # any exception, print error and return empty list to continue without any excluded file names
print(f'[WARNING] Unable to load / read CSV file with list of excluded file names: {csv_file_path}\n[INFO] All files will be hashed & inspected')
print(f'[INFO] Error message: {e}')
return []
def get_hashes_in_dir(dir_path: str, excluded_filenames: list = []) -> list: # helper function for hashing all files
hash_list = []
2023-02-28 23:26:23 +00:00
for subdir, dirs, files in os.walk(dir_path): # loop through all files in the directory and generate hashes
for filename in files:
2023-03-03 13:13:28 +00:00
if filename.lower() not in excluded_filenames: # convert to lowercase for comparison with excluded files & do not hash if in the excluded list
filepath = os.path.join(subdir, filename)
with open(filepath, 'rb') as f:
filehash = hashlib.sha256(f.read()).hexdigest()
if filehash != 'e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855': # do not include hashes of empty files
hash_list.append({ 'filepath': filepath, 'filename': filename, 'sha256 hash': filehash})
return hash_list
def hash_submissions(submissions_dir_path: str) -> str: # main function for hashing all files
os.makedirs(CSV_DIR, exist_ok=True)
2023-02-28 23:26:23 +00:00
submissions_dir_name = os.path.abspath(submissions_dir_path).split(os.path.sep)[-1] # get name of submission/assignment by separating path and use rightmost part
excluded_filenames = load_excluded_filenames(submissions_dir_name)
csv_file_name = f'{submissions_dir_name}_file_hashes_{datetime.now().strftime("%Y%m%d-%H%M%S")}.csv'
csv_file_path = os.path.join(CSV_DIR, csv_file_name)
2023-02-28 23:26:23 +00:00
with open(csv_file_path, 'w', newline='') as csvfile: # open the output CSV file for writing
fieldnames = ['Student ID', 'filepath', 'filename', 'sha256 hash']
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()
2023-02-28 23:26:23 +00:00
for student_dir_name in os.listdir(submissions_dir_path): # loop through each student dir to get hashes for all files per student
student_dir_path = os.path.join(submissions_dir_path, student_dir_name)
hashes_dict = get_hashes_in_dir(student_dir_path, excluded_filenames) # dict with hashes for all student files - except for 'excluded' file names
for d in hashes_dict:
d.update({'Student ID': student_dir_name}) # update hash records with student id
writer.writerows(hashes_dict)
print(f'[INFO] Created CSV file with all files & hashes in {submissions_dir_name}\nCSV file: {csv_file_path}')
return csv_file_path
def inspect_for_duplicate_hashes(hashes_csv_file_path: str): # main function for finding duplicate / suspicious hashes
csv = pd.read_csv(hashes_csv_file_path)
df = pd.DataFrame(csv) # df with all files and their hashes
2023-02-28 23:26:23 +00:00
drop_columns = ['filepath', 'filename'] # only need to keep 'student id' and 'sha256 hash' for groupby later
2023-03-03 13:13:28 +00:00
df_clean = df.drop(columns=drop_columns) # clear not needed columns
duplicate_hash = df_clean.loc[df_clean.duplicated(subset=['sha256 hash'], keep=False), :] # all files with duplicate hash - incl. files from the same student id
# agg() for 'Student ID' True if more than 1 in groupby (= files with the same hash by multiple student ids)
# False if unique (= files from the same student id with the same hash)
hash_with_multiple_student_ids = duplicate_hash.groupby('sha256 hash').agg(lambda x: len(x.unique())>1)
# list with duplicate hashes - only if different student id (doesn't include files from same student id)
suspicious_hashes_list = hash_with_multiple_student_ids[hash_with_multiple_student_ids['Student ID']==True].index.to_list()
files_with_suspicious_hash = df[df['sha256 hash'].isin(suspicious_hashes_list)] # df with all files with duplicate/suspicious hash, excludes files from the same student id
df_suspicious = files_with_suspicious_hash.sort_values(['sha256 hash', 'Student ID']) # sort before output to csv
try:
submissions_dir_name = os.path.basename(hashes_csv_file_path).split('_file_hashes_')[0]
csv_out = hashes_csv_file_path.rsplit('_', 1)[0].replace('file_hashes', 'suspicious_') + datetime.now().strftime("%Y%m%d-%H%M%S") + '.csv'
df_suspicious.to_csv(csv_out, index=False)
print(f'[INFO] Created CSV file with duplicate/suspicious hashes in {submissions_dir_name}\nCSV file: {csv_out}')
except Exception as e:
exit(f'[ERROR] Something went wrong while trying to save csv file with suspicious hashes\nError message: {e}')