Files
BBGradebookOrganiser/utils/inspector.py

58 lines
3.2 KiB
Python
Raw Normal View History

import os
from datetime import datetime
import csv
import hashlib
import pandas as pd
CSV_DIR = os.path.join(os.getcwd(), 'csv')
def get_hashes_in_dir(dir_path: str) -> list:
hash_list = []
2023-02-28 23:26:23 +00:00
for subdir, dirs, files in os.walk(dir_path): # loop through all files in the directory and generate hashes
for file in files:
filepath = os.path.join(subdir, file)
with open(filepath, 'rb') as f:
filehash = hashlib.sha256(f.read()).hexdigest()
hash_list.append({ 'filepath': filepath, 'filename': file, 'sha256 hash': filehash})
return hash_list
2023-02-28 23:26:23 +00:00
def hash_submissions(submissions_dir_path: str) -> str:
os.makedirs(CSV_DIR, exist_ok=True)
2023-02-28 23:26:23 +00:00
submissions_dir_name = os.path.abspath(submissions_dir_path).split(os.path.sep)[-1] # get name of submission/assignment by separating path and use rightmost part
csv_file_name = f'{submissions_dir_name}_file_hashes_{datetime.now().strftime("%Y%m%d-%H%M%S")}.csv'
csv_file_path = os.path.join(CSV_DIR, csv_file_name)
2023-02-28 23:26:23 +00:00
with open(csv_file_path, 'w', newline='') as csvfile: # open the output CSV file for writing
fieldnames = ['Student ID', 'filepath', 'filename', 'sha256 hash']
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()
2023-02-28 23:26:23 +00:00
for student_dir_name in os.listdir(submissions_dir_path): # loop through each student dir to get hashes for all files per student
student_dir_path = os.path.join(submissions_dir_path, student_dir_name)
2023-02-28 23:26:23 +00:00
hashes_dict = get_hashes_in_dir(student_dir_path) # dict with hashes for all student files
for d in hashes_dict:
d.update({'Student ID': student_dir_name}) # update hash records with student id
writer.writerows(hashes_dict)
print(f'[INFO] Created CSV file with all files & hashes in {submissions_dir_name}\nCSV file: {csv_file_path}')
return csv_file_path
2023-02-28 23:26:23 +00:00
def get_suspicious_hashes(df: pd.DataFrame) -> list:
2023-02-28 23:26:23 +00:00
drop_columns = ['filepath', 'filename'] # only need to keep 'student id' and 'sha256 hash' for groupby later
df = df.drop(columns=drop_columns).sort_values('sha256 hash') # clear not needed colums & sort by hash
duplicate_hash = df.loc[df.duplicated(subset=['sha256 hash'], keep=False), :] # all files with duplicate hash - incl. files from the same student id
2023-02-28 23:26:23 +00:00
hash_with_multiple_student_ids = duplicate_hash.groupby('sha256 hash').agg(lambda x: len(x.unique())>1) # true if more than 1 unique student ids (= files with the same hash by multiple student ids), false if unique student id (= files from the same student id with the same hash)
2023-02-28 23:26:23 +00:00
suspicious_hashes_list = hash_with_multiple_student_ids[hash_with_multiple_student_ids['Student ID']==True].index.to_list() # list with duplicate hashes - only if different student id (doesn't include files from same student id)
return suspicious_hashes_list
def suspicious_by_hash(df: pd.DataFrame) -> pd.DataFrame:
suspicious_hashes_list = get_suspicious_hashes(df)
files_with_suspicious_hash = df[df['sha256 hash'].isin(suspicious_hashes_list)] # excluding duplicate from same student id
return files_with_suspicious_hash.sort_values(['sha256 hash', 'Student ID'])